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Abstract— In this paper, we discuss the development and
experimental implementation of a nonlinear control designfor
magnetostrictive transducers operating in hysteretic regimes.
The hysteresis and constitutive nonlinearities are characterized
using a homogenized energy framework based on energy
relations at the lattice level employed in combination with
stochastic homogenization techniques that incorporate material
and field nonhomogeneities. Using this framework, we employ
nonlinear optimal control theory to construct open loop inputs
for tracking. We subsequently employ PI-based perturbation
feedback to ensure robustness with respect to model uncer-
tainty and sensor noise. Experimental implementation results
at frequencies up to 1000 Hz demonstrate the feasibility of
the method for high speed tracking while operating in highly
nonlinear operating regimes.

I. I NTRODUCTION

Present and emerging automotive, industrial, aeronautic,
aerospace and biomedical applications require actuators that
provide large force, high accuracy, moderate stroke, broad-
band capabilities. Moreover, the actuators often must be
compact, reconfigurable and multifunctional. For a num-
ber of applications, transducers employing ferroelectricor
ferromagnetic drive elements meet these criteria and are
being considered for high performance control systems. Two
common ferroelectric and ferromagnetic actuator materials
are lead zirconate titanate (PZT) and Terfenol-D.

Whereas these compounds provide unique actuator capa-
bilities, they also exhibit hysteresis and constitutive nonlin-
earities that must be accommodated in models, transducer
designs, and model-based control designs to achieve strin-
gent tracking and control specifications. The fact that the
hysteresis and nonlinearities are rate, stress, and temperature-
dependent compound the challenge of high performance
actuator design.

The most obvious way to limit hysteresis and nonlinear
effects is to restrict devices to low or moderate drive regimes.
Whereas this is feasible for some applications, it excludes
the devices from many high performance applications where
can prove advantageous over traditional actuators. Secondly,
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feedback can be used to linearize the material behavior for
certain operating regimes. However, it is illustrated in [9] and
Section IV that the authority of feedback algorithms degrades
at high frequencies. PZT-based devices can also be linearized
to a certain degree through the use of current or charge-
controlled amplifiers [6], [7]. However, this can prove expen-
sive when compared with more traditional voltage-controlled
amplifiers, and current-control is ineffective for maintaining
a fixed dc bias as required for various applications — e.g.,
maintaining a fixed position with anx-stage while sweeping
with a y-stage in an atomic force microscope.

In this paper, we experimentally demonstrate the feasi-
bility of a nonlinear control design for high speed, high
accuracy tracking. For brevity, we focus on a magnetic
device but the models and model-based control design are
equally applicable to ferroelectric materials — e.g., PZT-
based devices. The tracking application is motivated by
recent investigations focused on the use of Terfenol-D trans-
ducers to mill automotive components at high speed while
maintaining micron-level tolerances; however, the problem
and general formulation are ubiquitous for a wide range of
applications.

There are essentially two strategies to control hysteretic
actuators using nonlinear models. The first is to use the char-
acterization framework to construct an approximate nonlinear
inverse that linearizes the actuator response in the manner
depicted in Figure 1(a) — e.g., see [24]. Linear control
algorithms are then used to achieve control objectives. This
method has the advantage of linear control designs but has
the disadvantage that the model inverse may be difficult to
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Fig. 1. (a) Linear control design employing a nonlinear, model-based
inversed compensator, and (b) nonlinear model-based control design.
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initiate and implement at high speed. Moreover, scaling or
mapping may be required to convert amplifier outputs (e.g.,
voltage, current, or field) to inverse inputs (e.g., magnetiza-
tion). Within the context of ferroelectric and ferromagnetic
actuators, this approach has been employed using Preisach
models, domain wall models and homogenized energy mod-
els. We note that experimental implementation of open-
loop and feedback designs employing Preisach-based inverse
compensators are reported in [3], [8], [21]–[23] whereas open
loop experimental control implementation of a homogenized
energy inverse are reported in [4].

The second strategy is to construct nonlinear control
designs which yield input signals that directly incorporate
actuator nonlinearities as depicted in Figure 1(b) — e.g.,
see [13], [25]. If optimal control theory is employed, this
approach requires the approximate solution of a two-point
boundary value problem which can be computationally in-
tensive. However, this technique avoids the real-time imple-
mentation of the model inverse and scaling issues associated
with inverse compensators.

In this paper, we demonstrate the experimental imple-
mentation of a nonlinear control based on the homogenized
energy framework for characterizing hysteresis in ferro-
magnetic materials. Open loop control inputs are computed
offline through the approximation of a two-point boundary
value problem derived using optimal control theory. To
provide robustness with regard to model and measurement
errors, one can either linearize about the optimal state and
control to construct a linear perturbation model that is
amenable to LQR design, or employ direct PI feedback on
measured perturbations about the optimal state. We employ
the latter technique since implementation in this manner
provides the efficiency of classical PI designs while ac-
commodating frequency-dependent hysteresis and nonlinear
material dynamics via the nonlinear open-loop signal.

The hysteresis characterization framework and transducer
model are summarized in Section II. The nonlinear open loop
and perturbation designs are discussed in Section III, and the
experimental performance of the technique at frequencies up
to 1000 Hz is illustrated in Section IV.

II. N ONLINEAR CONSTITUTIVE RELATIONS AND

TRANSDUCERMODEL

We summarize here the ferromagnetic hysteresis frame-
work developed in [16], [20] and use it to construct a
model that characterizes the dynamics of the experimental
magnetic transducer. As detailed in [14], [19], analogous
relations quantify the hysteresis inherent to PZT and hence
the framework is applicable to a range of ferroic compounds.
It is noted in [4], [14], [18] that whereas the homogenized
energy framework provides an energy basis for certain ex-
tended Preisach models, it fundamentally differs from clas-
sical Preisach models in a number of aspects including the
direct incorporation of thermal relaxation mechanisms and
the capability that it provides to characterize noncongruent
behavior.

A. Constitutive Relations

LettingH andM denote the magnetic field and magneti-
zation, we consider the lattice-level Gibbs energy relation

G(H,M) = ψ(M) −HM (1)

where the Helmholtz energy is given by

ψ(M) =





1
2η(M +MR)2 ,M ≤ −MI

1
2η(M −MR)2 ,M ≥MI

1
2η(MI −MR)

(
M2

MI
−MR

)
, |M | < MI .

(2)
Here MI ,MR and η respectively denote the positive in-
flection point, the local remanent magnetization, and the
reciprocal slope after switching.

As detailed in [14], [16], [20], the balance ofG and the
relative thermal energykT/V , wherek, T andV respectively
denote Boltzmann’s constant, temperature in degrees Kelvin,
and a reference volume, yields the kernel relation

M(H) = x+ 〈M+〉 + x− 〈M−〉 (3)

which characterizes hysteresis at the lattice level. The frac-
tionsx+ andx− of positively and negatively oriented dipoles
are quantified by the differential equations

ẋ+ = −p+−x+ + p−+x−

ẋ− = −p−+x− + p+−x+

(4)

and the expected magnetizations due to positively and neg-
atively oriented moments are

〈M+〉 =

∫
∞

MI
Me−G(H,M)V/kT dM

∫
∞

MI
e−G(H,M)V/kT dM

,

〈M−〉 =

∫
−MI

−∞
Me−G(H,M)V/kT dM

∫
−MI

−∞
e−G(H,M)V/kT dM

.

(5)

The likelihoods of switching from positive to negative, and
conversely, are given by

p+− =
1

T (T )

∫ MI

MI−ǫ
e−G(H,M)V/kT dM

∫
∞

MI−ǫ e
−G(H,M)V/kT dM

,

p−+ =
1

T (T )

∫
−MI+ǫ

−MI
e−G(H,M)V/kT dM

∫
−MI+ǫ

−∞
e−G(H,M)V/kT dM

(6)

where ǫ is taken to be a small positive constant. The
relaxation timeT is the reciprocal of the frequency at which
dipoles attempt to switch — see [14], [16], [20] for details.

To incorporate the effects of polycrystallinity, material
nonhomogeneities, and variable interaction fields, we assume
that local coercive and interaction fields are manifestations of
distributions having associated densitiesν1(Hc) andν2(HI).
This yields the macroscopic field-magnetization relation

M(H) =

∫
∞

−∞

∫
∞

0

M(H+HI ;Hc)ν1(Hc)ν2(HI)dHcdHI .

(7)



For the device characterization results summarized in Sec-
tion IV, values for the discretized densities were estimated
using the techniques detailed in [14], [17].

B. Transducer Model

To model the experimental transducer depicted in Figure 2,
we assume that the Terfenol-D rod has areaA, length ℓ,
Young’s modulusY , densityρ, and Kelvin-Voigt damping
parameterC. The longitudinal displacement of the rod tip is
denoted byuℓ.

It is shown in [14] that the uniaxial stressσ is related to
the magnetization, given by (7), via the constitutive relation

σ = Y ε+ Cε̇− a1(M −M0) − a2(M −M0)
2 (8)

whereY is the elastic modulus at constant magnetization,ε
is the longitudinal strain,C is the Kelvin–Voigt damping
parameter,a1 is the piezomagnetic coefficient, anda2 is
the magnetostrictive coefficient. The bias magnetizationM0

includes the effects of a permanent magnet and the initial
magnetized state of the material.

We make the assumption that strains are uniform and given
by

ε(t) =
uℓ(t)

ℓ
. (9)

Balancing the forcesσA for the rod with those of the
restoring mechanism yields the lumped model

ρAℓ
d2uℓ

dt2
(t) +

CA

ℓ

duℓ

dt
(t) +

Y A

ℓ
uℓ(t)

= −mℓ
d2uℓ

dt2
(t) − cℓ

duℓ

dt
(t) − kuℓ(t)

+Aa1[M(H(t)) −M0] +Aa2[M(H(t)) −M0]
2

or, equivalently,

m
d2uℓ

dt2
(t) + c

duℓ

dt
(t) + kuℓ(t)

= ã1[M(H(t)) −M0] + ã2[M(H(t)) −M0]
2

(10)

where

m = ρAℓ+mℓ , c =
CA

ℓ
+ cℓ , k =

Y A

ℓ
+ kℓ

ã1 = Aa1 , ã2 = Aa2.

(11)

The initial conditions areuℓ(0) = u0 and duℓ

dt (0) = u1. The
magnetizationM is specified by the model (7).
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Fig. 2. Magnetic transducer design employed in the control experiments.

The model can subsequently be written as the first-order
system

ẋ(t) = Ax(t) +B(H(t))

x(0) = x0

(12)

wherex(t) = [uℓ(t), u̇ℓ(t)]
T , x0 = [u0, u1]

T and

A =

[
0 1

−k/m −c/m

]

B(H) =
[
ã1(M(H) −M0) + ã2(M(H) −M0)

2
] [

0
1/m

]
.

In the subsequent control formulation, the input is taken to
beu = H or u = nI whereI denotes the current applied to
the solenoid andn is the number of coils per unit length.

III. PERTURBATION CONTROL FORMULATION

A. Open Loop Control

We summarize here the open loop optimal control for-
mulation detailed in [10], [12]. We letr denote a reference
signal to be tracked,y(t) = Cx(t) denote observations and
let e(t) = Cx(t) − r(t) designate the error. The augmented
penalty functional is taken to be

J =
1

2
[Cx(tf ) − r(tf )]TP [Cx(tf ) − r(tf )]

+

∫ tf

t0

[
H− λT (t)ẋ(t)

]
dt

(13)

whereλ denotes the adjoint variable, the Hamiltonian is

H =
1

2
[e(t)TQe(t) + uT (t)Ru(t)]

+λT [Ax(t) + [B(u)](t)] ,

(14)

and Q,R respectively penalize large errors and control
inputs.

Enforcement of necessary conditions to minimize (13) —
see [2], [5] — yields the control input relation

u∗(t) = −R−1

(
∂B(u)

∂u

)T

λ(t) (15)

along with the two-point boundary value problem

ż(t) = F (t, z) (16)

wherez = [x, λ]T and

F (t, z) =

[
Ax(t) + [B(u)](t)

−ATλ(t) − CTQCx(t) + CTQr(t)

]
. (17)

To approximate the solution to (16), we employ a finite
difference discretization defined on the gridtj = j∆t, where
∆t =

tf

N and j = 0, · · · , N . Letting zj ≈ z(tj), this yields
the discrete system

1

∆t
[zj+1 − zj ] =

1

2
[F (tj , zj) + F (tj+1, zj+1)]

E0z0 = [x0, 0]T

Ef zN = [0,−CTPr(tf )]T .

(18)



The solution of (18) can be expressed as the problem of
finding zh = [z0, · · · , zN ] which solves

F(zh) = 0. (19)

A quasi-Newton iteration of the form

zk+1
h = zk

h + ξk
h, (20)

whereξk
h solves

F ′(zk
h)ξk

h = −F(zk
h), (21)

is then used to approximate the solution to (19). The Jacobian
has the form

F ′(zh) =




S0 R0

S1 R1

. ..
. . .

SN−1 RN−1

E0 Ef




(22)

where

Si = −
1

∆t

[
I 0

0 I

]
−

1

2

[
A ∂

∂λB[u∗i ]

−CTQC −AT

]
. (23)

The representation forRi is similar.
Remark 3.1: It is shown in [13] that an analytic LU

decomposition can be determined forF(zk
h). This signifi-

cantly reduces memory requirements and is fundamental for
efficient solution since it reduces the dimension of the linear
system solution to 8. For the results reported in Section IV,
solution of (19), and hence computation of a nonlinear
control input, took on the order of 7 seconds.

B. Perturbation Feedback

The relation (15) provides an open loop control signal
that is optimal for givenQ,R in the absence of model or
measurement error. To provide robustness with regard to such
uncertainties, we consider perturbation feedback as detailed
in [2], [5]. Linearization about the optimality system yields

δẋ(t) = Aδx(t) +Bδu(t)

δy(t) = Cδx(t)

δx(0) = x̂0

(24)

whereδu, δx and δy are first-order variations aboutu∗, x∗

andy∗.
To facilitate experimental implementation, we use classical

PI control to computeδu; that is, we take

δu(t) = −KP e(t) −KI

∫ t

0

e(s)ds. (25)

The final control input is then

u(t) = u∗(t) + δu(t). (26)

Remark 3.2: The computation of the open loop inputu∗ is
performed off-line and hence does not affect implementation
speed. The computation ofδu can be performed at the same
speed as classical PI implementation. Hence the experimental
implementation of the perturbation control is as efficient as
standard PI implementation.

IV. EXPERIMENTAL RESULTS

The control algorithm was implemented on a magne-
tostrictive transducer having a Terfenol-D rod of length 0.1
m and diameter of 0.0125 m. The preload on the rod was
10-14 MPa and it was subjected to a magnetic field bias of
approximately 40 kA/m. Strains at the end of the rod were
measured with a capacitive sensor having a sensitivity of 2.5
mV and a bandwidth of 12.5 kHz.

To ensure that the transducer was initialized to the max-
imal remanent value prior to characterization and control
experiments, each data set was initiated by a half-cycle of
a 1 Hz sine wave having an amplitude of 1 volt (this cor-
responds to a current of 4.6 amp). Sinusoidal input voltages
and corresponding output displacements were subsequently
collected at 100, 200, 300 and 500 Hz. As illustrated in
Figure 3, the degree of hysteresis exhibited by the device is
highly frequency-dependent thus necessitating the incorpora-
tion of magnetic moment dynamics via the relations (3) and
(4), and the rod dynamics modeled by (10). Details regarding
the characterization of the nonlinear voltage-current relation
are provided in [9].

To construct the model, the parametersMr, η, τ, γ,
a1, a2,m, c, k and densitiesν1 and ν2 were estimated
through a least squares fit to the combined set of 100, 200,
300 and 500 Hz data. The resulting model fit is plotted
in Figure 4. The model with this parameter set was then
employed in all control experiments.

To illustrate the tracking capability of the nonlinear control
design, experiments were performed at 100, 200, 300, 500,
700 and 1000 Hz. The amplitude of a sinusoidal reference
signal was chosen to be 300 ppm which represents an operat-
ing regime in which hysteresis and constitutive nonlinearities
are significant — see Figure 3.

The open loop and perturbation feedback control results at
200 Hz are respectively plotted in Figures 5 and 6 whereas
analogous results at 1000 Hz are plotted in Figures 7 and 8.
For both frequencies, it is noted that whereas the open loop
control (15) provides reasonable accuracy, the inclusion of
the perturbation feedback term (26) improves the accuracy
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Fig. 3. Frequency-dependent current-strain data at 100, 200, 300 and
500 Hz.
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Fig. 4. Model fit to the experimental data at (a) 200 and (b) 500Hz.

of both the magnitude and phase. We point out that the
characterization experiments did not include 1000 Hz data;
hence the accuracy of the nonlinear model-based control
at this frequency illustrates the predictive capability ofthe
model.

To provide an initial comparison between the nonlinear
control technique discussed here and classical PI designs,
the tracking authority achieved with PI inputs at 1000 Hz
is illustrated in Figure 9. At this frequency, neither the
correct amplitude nor phase are achieved thus yielding errors
on the order of the reference signal. It is detailed in [9],
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Fig. 5. Nonlinear open loop tracking authority provided by (15) at 200 Hz.
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Fig. 6. Tracking authority provided by the perturbation feedback control
(26) at 200 Hz.

where a complete comparison between the two designs at
multiple frequencies are reported, that with the 10 kHz
sample frequency, PI control is viable at frequencies below
approximately 500 Hz. At higher frequencies, the nonlinear
control framework proves advantageous since it provides
high accuracy while retaining the implementational effi-
ciency of classical PI designs.
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Fig. 7. Nonlinear open loop tracking authority provided by (15) at 1000 Hz.
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Fig. 8. Tracking authority provided by the perturbation feedback control
(26) at 1000 Hz.
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Fig. 9. Tracking authority provided by PI control at 1000 Hz.

V. CONCLUDING REMARKS

In this paper, we report initial experimental results demon-
strating the tracking authority provided by a nonlinear control
design for magnetostrictive transducers operating in highly
nonlinear and hysteretic regimes. The control design is
comprised of a nonlinear open loop component, based on a
homogenized energy model, employed in combination with a
perturbation PI feedback component. Because the open loop
gains are computed off-line, the closed loop implementation
provides the efficiency of classical PI control but with signifi-
cantly enhanced tracking capability at high frequencies since
the model-based open loop control incorporates frequency-
dependent hysteresis and constitutive nonlinearities. This
significantly extends the results of [10], [12] which focused
solely on the numerical implementation of the control design.

The present experimental results illustrate sinusoidal track-
ing at frequencies up to 1 kHz for a magnetic actuator. How-
ever, the unified nature of the characterization framework
[14], [19] permits direct extension of the theory to ferro-
electric (e.g., PZT) and ferroelastic (e.g., SMA) devices.The
numerical implementation of an analogous control design for
PZT stages is illustrated in [11] for a variety of reference
signals and the experimental implementation of PZT control
design is under present investigation.
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